1. 首页 > 热点 >

python滤波(python滤波频率太低会怎么样)

本文目录一览:

python读取txt文件转化为折线图后怎么实现滤波器?

import CV2

python滤波(python滤波频率太低会怎么样)python滤波(python滤波频率太低会怎么样)


import copy

import numpy as np

import random

使用的是pycharm

因为近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了

要求是灰度图像,所以步先把图像转化成灰度图像

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的

def chng(a):

if a < 255/3:

b = a/2

elif a < 255/32:

b = (a-255/3)2 + 255/6

else:

b = (a-255/32)/2 + 255/6 +255/32

return b

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方图均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H W 1.

out = img.copy()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)

不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了

用到了random.gauss()

percentage是噪声占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetagesrc.shape[0]src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY]< 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]>255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetagesrc.shape[0]src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1) img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (stepstep)

return sum_s

#中值滤波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 > img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(stepstep/2)+1)]

def median_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代码如下:

if __name__ == "__main__":

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)

图像滤波是一种十分常见的图像处理手段。通常,你可以认为相邻位置像素是紧密联系的,它们共同来显示对某个物体,图像滤波则通过运算来排除图像中和周围相大的像素。当然,这并不是的, 有时候你为了评估图像的质量,也会将这些“特立独行”的像素作为选取的目标 。无论你采用什么方法,记住你要的目标就行,有时候你的目标可能是别人的背景。

滤波常常会使得图像变得模糊(非),那么,为什么你需要将一幅清晰的图像变得模糊呢?下面的例子应该可以解释。

高斯滤波采用满足正态分布的核模板,其参数的主要参数是标准σ,代表核的离散程度,σ值越小,模板中心系数与边缘系数越大,平滑的程度越小。

高斯滤波对图像采集过程中由于不良照明/高温引起的传感器噪声信号有较好的效果,消除了图像中的高频信号。

由于得到的是一维的Gaussian Kernel,你可以采用下面的方式转为二维的

为了便于直观感受高斯滤波的效果,使用Canny算子来提取轮廓对比,你可以试试在特征提取前加高斯滤波对比。

补充说明:对于均值滤波,你也可以使用cv2.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]])来实现,需要将normalize设置为True,当设置normalize为False时,实现的是将kernel内像素相加,文档做出的描述为:

中值滤波对图像中的脉冲型(椒盐等)噪声信号处理效果好,当 你的应用场景存在这种颗粒感的噪声信号时,中值滤波会是一种很好的选择 。它,选取kernel区域内像素点集的中值为锚点的像素值,对类似投票机制中的分(高灰阶点)和分(过低灰阶点)影响有很好的抑制作用。

如果你的应用涉及到图像美化,双边滤波可以初步达到你的期望,关于双边滤波,这里不做展开,由你来探索,其函数参数信息如下。

对于opencv-python的图像滤波部分有问题欢迎留言, He Fun With OpenCV-Python, 下期见。

需要安装matplotlib库,可以用如下命令安装:

pip install matplotlib

1

txt文本数据如下所示(示例中的每一行内部用空格分开):

100 0.6692215

200 0.57682794

300 0.45037615

400 0.42214713

500 0.45073098

600 0.4728373

700 0.48083866

800 0.3751492

900 0.4249844

1000 0.36427215

1100 0.36209464

1200 0.40490758

1300 0.3774191

1400 0.34719718

1500 0.3648946

1600 0.261855

1700 0.4321903

1800 0.35071397

1900 0.279996

2000 0.30030474

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

适用于Python3的代码如下所示:

import matplotlib.pyplot as plt

input_txt = 'demo.txt'

x = []

y = []

f = open(input_txt)

for line in f:

line = line.strip('\n')

line = line.split(' ')

x.append(float(line[0]))

y.append(float(line[1]))

f.close

plt.plot(x, y, marker='o', label='lost plot')

plt.xticks(x[0:len(x):2], x[0:len(x):2], rotation=45)

plt.margins(0)

plt.xlabel("train step")

plt.ylabel("lost")

plt.title("matplotlip plot")

plt.tick_params(axis="both")

plt.show()

数字图像处理Python实现图像灰度变换、直方图均衡、均值滤波

import CV2

import copy

import numpy as np

import random

使用的是pycharm

因为近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了

要求是灰度图像,所以步先把图像转化成灰度图像

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的

def chng(a):

if a < 255/3:

b = a/2

elif a < 255/32:

b = (a-255/3)2 + 255/6

else:

b = (a-255/32)/2 + 255/6 +255/32

return b

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方图均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H W 1.

out = img.copy()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)

不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了

用到了random.gauss()

percentage是噪声占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetagesrc.shape[0]src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY]< 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]>255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetagesrc.shape[0]src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1) img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (stepstep)

return sum_s

#中值滤波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 > img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(stepstep/2)+1)]

def median_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代码如下:

if __name__ == "__main__":

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)

OpenCV-Python系列六:图像滤波

import CV2

import copy

import numpy as np

import random

使用的是pycharm

因为近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了

要求是灰度图像,所以步先把图像转化成灰度图像

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的

def chng(a):

if a < 255/3:

b = a/2

elif a < 255/32:

b = (a-255/3)2 + 255/6

else:

b = (a-255/32)/2 + 255/6 +255/32

return b

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方图均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H W 1.

out = img.copy()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)

不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了

用到了random.gauss()

percentage是噪声占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetagesrc.shape[0]src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY]< 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]>255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetagesrc.shape[0]src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1) img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (stepstep)

return sum_s

#中值滤波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 > img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(stepstep/2)+1)]

def median_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代码如下:

if __name__ == "__main__":

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)

图像滤波是一种十分常见的图像处理手段。通常,你可以认为相邻位置像素是紧密联系的,它们共同来显示对某个物体,图像滤波则通过运算来排除图像中和周围相大的像素。当然,这并不是的, 有时候你为了评估图像的质量,也会将这些“特立独行”的像素作为选取的目标 。无论你采用什么方法,记住你要的目标就行,有时候你的目标可能是别人的背景。

滤波常常会使得图像变得模糊(非),那么,为什么你需要将一幅清晰的图像变得模糊呢?下面的例子应该可以解释。

高斯滤波采用满足正态分布的核模板,其参数的主要参数是标准σ,代表核的离散程度,σ值越小,模板中心系数与边缘系数越大,平滑的程度越小。

高斯滤波对图像采集过程中由于不良照明/高温引起的传感器噪声信号有较好的效果,消除了图像中的高频信号。

由于得到的是一维的Gaussian Kernel,你可以采用下面的方式转为二维的

为了便于直观感受高斯滤波的效果,使用Canny算子来提取轮廓对比,你可以试试在特征提取前加高斯滤波对比。

补充说明:对于均值滤波,你也可以使用cv2.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]])来实现,需要将normalize设置为True,当设置normalize为False时,实现的是将kernel内像素相加,文档做出的描述为:

中值滤波对图像中的脉冲型(椒盐等)噪声信号处理效果好,当 你的应用场景存在这种颗粒感的噪声信号时,中值滤波会是一种很好的选择 。它,选取kernel区域内像素点集的中值为锚点的像素值,对类似投票机制中的分(高灰阶点)和分(过低灰阶点)影响有很好的抑制作用。

如果你的应用涉及到图像美化,双边滤波可以初步达到你的期望,关于双边滤波,这里不做展开,由你来探索,其函数参数信息如下。

对于opencv-python的图像滤波部分有问题欢迎留言, He Fun With OpenCV-Python, 下期见。

加性高斯白噪声及维纳滤波的基本原理与Python实现

import CV2

import copy

import numpy as np

import random

使用的是pycharm

因为近看了《银翼杀手2049》,里面Joi实在是太好看了所以原图像就用Joi了

要求是灰度图像,所以步先把图像转化成灰度图像

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

个任务是利用分段函数增强灰度对比,我自己随便写了个函数大致是这样的

def chng(a):

if a < 255/3:

b = a/2

elif a < 255/32:

b = (a-255/3)2 + 255/6

else:

b = (a-255/32)/2 + 255/6 +255/32

return b

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

下一步是直方图均衡化

# histogram equalization

def hist_equal(img, z_max=255):

H, W = img.shape

# S is the total of pixels

S = H W 1.

out = img.copy()

sum_h = 0.

for i in range(1, 255):

ind = np.where(img == i)

sum_h += len(img[ind])

z_prime = z_max / S sum_h

out[ind] = z_prime

out = out.astype(np.uint8)

return out

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

在实现滤波之前先添加高斯噪声和椒盐噪声(代码来源于网络)

不知道这个椒盐噪声的名字是谁起的感觉隔壁小孩都馋哭了

用到了random.gauss()

percentage是噪声占比

def GaussianNoise(src,means,sigma,percetage):

NoiseImg=src

NoiseNum=int(percetagesrc.shape[0]src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

NoiseImg[randX, randY]=NoiseImg[randX,randY]+random.gauss(means,sigma)

if NoiseImg[randX, randY]< 0:

NoiseImg[randX, randY]=0

elif NoiseImg[randX, randY]>255:

NoiseImg[randX, randY]=255

return NoiseImg

def PepperandSalt(src,percetage):

NoiseImg=src

NoiseNum=int(percetagesrc.shape[0]src.shape[1])

for i in range(NoiseNum):

randX=random.randint(0,src.shape[0]-1)

randY=random.randint(0,src.shape[1]-1)

if random.randint(0,1) img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s += 0

else:

sum_s += img[k][m] / (stepstep)

return sum_s

#中值滤波模板

def median_filter(x, y, step, img):

sum_s=[]

for k in range(x-int(step/2), x+int(step/2)+1):

for m in range(y-int(step/2), y+int(step/2)+1):

if k-int(step/2) 0 or k+int(step/2)+1 > img.shape[0]

or m-int(step/2) 0 or m+int(step/2)+1 > img.shape[1]:

sum_s.append(0)

else:

sum_s.append(img[k][m])

sum_s.sort()

return sum_s[(int(stepstep/2)+1)]

def median_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = median_filter(i, j, n, img)

return img1

def mean_filter_go(img, n):

img1 = copy.deepcopy(img)

for i in range(img.shape[0]):

for j in range(img.shape[1]):

img1[i][j] = mean_filter(i, j, n, img)

return img1

完整main代码如下:

if __name__ == "__main__":

# 读入原始图像

img = CV2.imread('joi.jpg')

# 灰度化处理

gray = CV2.cvtColor(img, CV2.COLOR_BGR2GRAY)

CV2.imwrite('img.png', gray)

rows = img.shape[0]

cols = img.shape[1]

cover = copy.deepcopy(gray)

for i in range(rows):

for j in range(cols):

cover[i][j] = chng(cover[i][j])

CV2.imwrite('cover.png', cover)

covereq = hist_equal(cover)

CV2.imwrite('covereq.png', covereq)

covereqg = GaussianNoise(covereq, 2, 4, 0.8)

CV2.imwrite('covereqg.png', covereqg)

covereqps = PepperandSalt(covereq, 0.05)

CV2.imwrite('covereqps.png', covereqps)

meanimg3 = mean_filter_go(covereqps, 3)

CV2.imwrite('medimg3.png', meanimg3)

meanimg5 = mean_filter_go(covereqps, 5)

CV2.imwrite('meanimg5.png', meanimg5)

meanimg7 = mean_filter_go(covereqps, 7)

CV2.imwrite('meanimg7.png', meanimg7)

medimg3 = median_filter_go(covereqg, 3)

CV2.imwrite('medimg3.png', medimg3)

medimg5 = median_filter_go(covereqg, 5)

CV2.imwrite('medimg5.png', medimg5)

medimg7 = median_filter_go(covereqg, 7)

CV2.imwrite('medimg7.png', medimg7)

medimg4 = median_filter_go(covereqps, 7)

CV2.imwrite('medimg4.png', medimg4)

图像滤波是一种十分常见的图像处理手段。通常,你可以认为相邻位置像素是紧密联系的,它们共同来显示对某个物体,图像滤波则通过运算来排除图像中和周围相大的像素。当然,这并不是的, 有时候你为了评估图像的质量,也会将这些“特立独行”的像素作为选取的目标 。无论你采用什么方法,记住你要的目标就行,有时候你的目标可能是别人的背景。

滤波常常会使得图像变得模糊(非),那么,为什么你需要将一幅清晰的图像变得模糊呢?下面的例子应该可以解释。

高斯滤波采用满足正态分布的核模板,其参数的主要参数是标准σ,代表核的离散程度,σ值越小,模板中心系数与边缘系数越大,平滑的程度越小。

高斯滤波对图像采集过程中由于不良照明/高温引起的传感器噪声信号有较好的效果,消除了图像中的高频信号。

由于得到的是一维的Gaussian Kernel,你可以采用下面的方式转为二维的

为了便于直观感受高斯滤波的效果,使用Canny算子来提取轮廓对比,你可以试试在特征提取前加高斯滤波对比。

补充说明:对于均值滤波,你也可以使用cv2.boxFilter(src, ddepth, ksize[, dst[, anchor[, normalize[, borderType]]]])来实现,需要将normalize设置为True,当设置normalize为False时,实现的是将kernel内像素相加,文档做出的描述为:

中值滤波对图像中的脉冲型(椒盐等)噪声信号处理效果好,当 你的应用场景存在这种颗粒感的噪声信号时,中值滤波会是一种很好的选择 。它,选取kernel区域内像素点集的中值为锚点的像素值,对类似投票机制中的分(高灰阶点)和分(过低灰阶点)影响有很好的抑制作用。

如果你的应用涉及到图像美化,双边滤波可以初步达到你的期望,关于双边滤波,这里不做展开,由你来探索,其函数参数信息如下。

对于opencv-python的图像滤波部分有问题欢迎留言, He Fun With OpenCV-Python, 下期见。

需要安装matplotlib库,可以用如下命令安装:

pip install matplotlib

1

txt文本数据如下所示(示例中的每一行内部用空格分开):

100 0.6692215

200 0.57682794

300 0.45037615

400 0.42214713

500 0.45073098

600 0.4728373

700 0.48083866

800 0.3751492

900 0.4249844

1000 0.36427215

1100 0.36209464

1200 0.40490758

1300 0.3774191

1400 0.34719718

1500 0.3648946

1600 0.261855

1700 0.4321903

1800 0.35071397

1900 0.279996

2000 0.30030474

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

适用于Python3的代码如下所示:

import matplotlib.pyplot as plt

input_txt = 'demo.txt'

x = []

y = []

f = open(input_txt)

for line in f:

line = line.strip('\n')

line = line.split(' ')

x.append(float(line[0]))

y.append(float(line[1]))

f.close

plt.plot(x, y, marker='o', label='lost plot')

plt.xticks(x[0:len(x):2], x[0:len(x):2], rotation=45)

plt.margins(0)

plt.xlabel("train step")

plt.ylabel("lost")

plt.title("matplotlip plot")

plt.tick_params(axis="both")

plt.show()

加性高斯白噪声属于白噪声的一种,有如下两个特点:

random.gauss(mu, sigma) 其值即服从高斯分布,若想要是实现加性高斯白噪声,循环作加即可

实际上逆滤波是维纳滤波的一种理想情况,当不存在加性噪声时,维纳滤波与逆滤波等同。

在时域内有

根据时域卷积定理,我们知道 时域卷积等于频域乘积

则有

这意味着,当我们已知系统函数时,我们可以很简单的完成滤波。

理解了逆滤波的基本过程之后,实际上维纳滤波就不是太大问题了。实际上,逆滤波对于绝大多数情况滤波效果都不好,因为逆滤波是通过傅里叶变换将信号由时域转换到频域,再根据 时域卷积定理 ,在频域作除法。对于乘性干扰这当然是没问题的,甚至是完美的。而如果存在加性噪声,例如:加性高斯白噪声。逆滤波效果就不好了,某些情况下几乎无法完成滤波情况。

输入信号经过系统函数后

时域上

频域上

若存在加性噪声则为

时域上

频域上

于是,从上面对输入信号的估计表达式可以看出,多出了一项加性噪声的傅里叶变换与系统函数的比值。尤其当 相对于 很小时,滤波后的信号距十分严重。

而我们又知道: 白噪声的白为噪声的功率谱为常数 ,即 为常数,于是,从直观上看,当 相对于 较大时,则 较小,上式项则较小,而第二项较大从而保持相对平稳。

click me!

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 12345678@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息