1. 首页 > 手机 >

凝胶渗透色谱仪 凝胶渗透色谱仪使用注意事项

怎么控制凝胶色谱法液体流速

首次采用该法检测的供试品应进行干扰试验。

凝胶渗透色谱是确定聚合物的完整分子量分布的简便常规的实用手段,也是用于分析水溶性聚合物、表征其分子量的重要工具。凝胶渗透色谱分析作并不复杂,掌握使用时的一些技巧与注意事项,有利于更好地发挥仪器的作用。

凝胶渗透色谱仪 凝胶渗透色谱仪使用注意事项凝胶渗透色谱仪 凝胶渗透色谱仪使用注意事项


1.进样系统

1.对于凝胶渗透色谱柱,须缓慢增加流速。突然增加流速(伴随压力增加)会损坏色谱柱。对于7.8 mm ID分析柱,建议流速不要超过1.0 mL/min,要获得较好的分离度,建议流速约为0.70 ~ 0.80 mL/min。而4.6 mm ID窄径柱的建议流速为0.3 ~ 0.35 mL/min。

2.为了增加分离的分辨率、加强渗透进程,以及在某些情况下降低溶剂粘度并降低色谱柱床的反压,需要在凝胶渗透色谱分析过程中需要将色谱柱加热至溶剂指南中所示的某一高温。

3.在利用示检测的传统凝胶渗透色谱分析中可以进注混合标样,但建议不要超过3个,以免要洗脱的标准品组分之间没有足够的分离度。如果利用先进的检测法如粘度测定法,需准确知道标样的曲线下面积,此时每次只能进注一个标样。

4.对于聚合物样品,大多数情况下可以使用窄分布标样相对校正。如果使用者需获取真实的分子量(相对于不够好的校对标准品而言),可使用与样品具有相同化学性质的宽分布标样或对照品。

5.水相凝胶渗透色谱柱中的的凝胶带有负电荷,会与阴离子样品发生离子排斥,与阳离子样品发生离子吸附。使用盐,可以很大程度减小这些影响,以及当与阳离子样品发生任何离子交换作用时减少对洗脱液pH值的调整。

6.更换色谱柱溶剂时,如果两种溶剂可混溶,可直接以0.1 - 0.2 ml/分钟的流速从一种溶剂转换为另一种溶剂。如果两种溶剂不可混溶,则需要使用一种中间溶剂(两种溶剂均可混溶于该溶剂)。

怎么控制凝胶色谱法液体流速

为了保持气相色谱分析的准确度,载气的流量要求恒定,其变化小于1%,通常使用减压阀、稳压阀、针形阀等,来控制气流的稳定性。

减压阀

减压阀俗称氧气表,装在高压气瓶的出口,用来将高压气体调节到较小的工作压力,通常将10~15MPa压力减小到0.1~0.5MPa。

由于气相色谱中所用载气流量较小,一般在100mL/min以下,所以单靠减压阀来控制流速是比较困难的,通常在减压阀输出气体的管线中还要串联稳压阀或针形阀,以地控制气体的流速。

稳压阀

稳压阀用以稳定载气(或燃气)的压力,常用的是波纹管双腔式稳压阀。使用这种稳压阀时进气口压力不得超过0.6MPa,出气口压力一般在0.1~0.3 MPa时稳压效果。使用时气源压力应高于输出压力0.05MPa。稳压阀不工作时,应顺时针转动放松调节手柄,使阀关闭,以防止波纹管、压簧长期受力疲劳而失效。使用时进气口和出气口不要接反,以免损坏波纹管。所用气源应干燥,无腐蚀性,无机械杂质。

凝胶色谱,薄层色谱,用什么气体?

Ve为供试品洗脱液体积,ml;

色谱析

式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。

chromatography

基于 混合 物 各组 体系 两相 物 理化性能异(吸附、配异等)进行离析际公认俄M.C.茨维特色谱创始

色谱体系两相作相运通其相固定 称固定相 ;另相移 称流相色谱析程物质迁移速度取决于与固定相流相相作用力溶质两相吸引力间作用力包括色散力、诱导效应、场间效应、氢键力斯酸碱相互作用于离离间静电吸引力较强吸引固定相溶质相滞于较强吸引流相溶质随着移反复进行与配使混合物各组离

色谱析类比较复杂根据流相固定相同色谱气相色谱液相色谱①气相色谱流相气体 : 气固色谱 其流相气体固定相固体;气液色谱其流相气体固定相涂惰性固体液体②液相色谱流相液体?液固色谱其流相液体固定相固体;②液液色谱其流相固定相均液体按吸附剂及其使用形式柱色谱、纸色谱薄层色谱按吸附力吸附色谱、离交换色谱、配色谱凝胶渗透色谱按色谱作终止展色谱洗脱色谱按进区带色谱、迎色谱顶替色谱

经色谱离各组与已知标准品照进行定性析现代化色谱-质谱联用或色谱-光谱联用仪器配备丰富谱图库微处理机色谱柱流组直接送入质谱光谱仪进行定性鉴定数据定量处理发智能化色谱析发展主要向

色谱特点?①离效率高离性质十相近物质含百种组复杂混合物进行离②离速度快几钟几十钟能完复杂物质离作③灵敏度高能检测含量10-12克物质④进行规模纯物质制备

色谱化工、石油、物化、卫、环境保护、食品检验、医检验、农业等各领域都广泛应用各种色谱气液色谱液固色谱应用广气相色谱离、化合物比较理想等用液液色谱液固色谱离离交换色谱般用于离基团物质尺寸再用凝胶渗透色谱离薄层色谱纸色谱析速度快、便、本低柱色谱比薄层色谱纸色谱具更高辨能力

化工合成物有哪些

(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography) 流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于高效液相色谱计算公式: 高效液相色谱计算公式

化学生物化工原料试剂分析试剂等等。

按下式计算:

无机化工原料有机化工原料无机盐氧化物工业气体碱类酸类原料、中间体树脂其它聚合物化学试剂催化剂、化学助剂化学纤维食品添加剂饲料添加剂日用化学品香料、香精染料颜料涂料胶粘剂化学油墨石油制品塑料及制品橡胶及制品玻璃及制品实验室用品合成材料化工废料化工设备化工产品,离心机超速离心机高速冷冻离心大容量离心机台式离心机其他离心机培养箱/干燥箱/试验箱CO2/三气培养箱低温培养箱植物培养箱生化培养箱杂交箱/杂交仪恒温/恒湿培养箱厌氧培养箱霉菌培养箱烘箱/干燥箱其他培养箱品试验箱同位素/放射性测量液体闪烁仪γ计数器其他同位素仪器显微系统生物显微镜倒置显微镜实体/体视显微镜电子显微镜/扫描探针显微成像显微作共聚焦显微镜显微镜附件/滤光片其他显微系统电泳/凝胶/发光检测生物/化学发光检测电泳仪电泳槽国产凝胶成像进口凝胶成像医学检验仪器酶标仪洗板机微生物仪器渗透压仪其他医学检验仪器PCR仪普通PCR定量PCR梯度PCR紫外设备紫外透射/分析仪紫外/蛋白检测仪光谱/色谱/质谱/层析光谱/分光光度计液相色谱气相色谱质谱仪气体发生器低温/制冷/恒温低温冰箱液氮容器冻干机制冰机恒温槽/水浴/油浴金属浴/干式恒温器其他温度设备/程序降温仪冷却水循环理化分析酸度计/PH计离子计/电导计其它理化分析/SPR粒度仪旋光仪/糖度计合成/测序/基因/细胞分析/蛋白质DNA/有机/多肽合成DNA测序/基因分析仪细胞分析仪蛋白质组仪器超纯水/超滤/浓缩超纯水膜过滤/超滤/微滤浓缩仪旋转蒸发仪发酵罐/细胞反应器国产发酵罐进口发酵罐细胞反应器发酵罐配套产品天平微量天平分析天平精密天平其它天平及附件植物生理生态植物生理仪器土壤/生态仪器净化/安全/消毒超净工作台生物安全柜消毒/灭菌器生物安全防护转基因仪转基因仪生理/病理/理/毒理电生理仪器膜片钳动物实验仪器切片机动物行为动物活体成像脑立体各类泵蠕动泵/恒流泵真空泵及其他。

光谱,紫外光谱,质谱,核磁共振,凝胶色谱 它们有什么用途

光谱:

对样品的适用性相当广泛,固态、液态或气态样品都能应用,无机、有机、高分子化合物都可检测。此外,光谱还具有测试迅速,作方便,重复性好,灵敏度高,试样用量少,仪器结构简单等特点,因此,它已成为现代结构化学和分析化学最常用和不可缺少的工具。光谱在高聚物的构型、构将1.5%琼脂糖溶液倾倒于大小适宜的水平玻板上,厚度约3mm,静置,待凝胶凝固成无气泡的均匀薄层后,于琼脂糖凝胶板负极1/3处的上下各打1孔,孔径3mm,孔距10~15mm。测定孔加供试品溶液10μl和溴酚蓝指示液1滴,对照孔加正常人血清或人血浆10μl和溴酚蓝指示液1滴。用3层滤纸搭桥和缓冲液(电泳缓冲液)接触,100V恒压电泳约2小时(指示剂迁移到前沿)。电泳结束后,在两孔之间距离两端约3~5mm处挖宽3mm槽,向槽中加入血清抗体或人血浆抗体,槽满但不溢出。放湿盒中37℃扩散24小时。扩散完毕后,用生理氯化钠溶液充分浸泡琼脂糖凝胶板,以除去未结合蛋白质。将浸泡好的琼脂糖凝胶板放入0.5%氨基黑溶液染色,再用脱色液脱色至背景基本无色。用适当方法保存或图谱。与对照品比较,供试品的主要沉淀线应为待测蛋白质。象、力学性质的研究以及物理、天文、气象、遥感、生物、医学等领域也有广泛的应用。

紫外光谱:

紫外光谱主要在方面在破析一系列维生素、抗菌素及天然产物的化学结构曾起过重要作用,如维生素A1、维生素A2、维生素B12、维生素B1、青霉素、链霉素、土霉素、萤火虫尾部的发光物质等。

核磁共振应用:

核磁共振成像(MRI)检查已经成为一种常见的影像检查方式,核磁共振成像作为一种新型的影像检查技术,不会对人体健康有影响,但六类人群不适宜进行核磁共振检查:即使安装心起搏器的人、有或疑有眼球内金属异物的人、动脉瘤银夹结扎术的人、体内金属异物存留或金属假体的人、有生命危险的危重病人、幽闭恐惧症患者等。不能把监护仪器、抢救器材等带进核磁共振检查室。

质谱:

由于质谱分析具有灵敏度高,样品用量少,分析速度快,分离和鉴定同时进行等优点,因此,质谱技术广泛的应用于化学,化工,环境,能源,,运动医学,刑事科学技术,生命科学,材料科学等各个领域。

凝胶渗透色谱:

凝胶渗透色谱法主要用于中可溶的高聚物 (聚、聚氯已烯、聚乙烯、聚等)相对分子质本法系以供试品与特异性抗体结合后,抗体再与酶标抗体特异性结合,通过酶学反应的显色,对供试品的抗原特异性进行检查。量分布分析及分离,常用的凝胶为交联聚凝胶,洗脱溶剂为等。

一滴清

一滴清是一种解5 .离子色谱法(Ion Chromatography)热镇痛品,原理其有效成分是对乙酰,主要用于儿童普通感冒或流行性感冒引起的发热,也可以缓解轻至中度疼痛,如头痛、关节痛、偏头痛、牙痛、肌肉痛、神经痛、痛经等。

请注意,以上信息仅供参考,使用该物时请一定要遵从医嘱。如果您对物使用有任何疑问,请向专业医生寻求帮助。

2010年版典三部附录Ⅷ

目录 1 拼音 2 附录Ⅷ A 免疫印迹法 2.1 试剂 2.2 检查法 2.3 结果判定 3 附录Ⅷ B 免疫斑点法 3.1 试剂 3.2 检查法 3.3 结果判定 4 附录Ⅷ C 免疫双扩散法 4.1 供试品溶液的制备 4.2 试剂 4.3 检查法 4.4 结果判定 5 附录Ⅷ D 免疫电泳法 5.1 试剂 5.2 对照品 5.3 供试品溶液的制备 5.4 检查法 5.5 注意事项 6 附录Ⅷ E 肽图检查法 6.1 法 胰蛋白酶裂解-反相高效液相色谱法 6.1.1 色谱条件 6.1.2 检查法 6.2 第二法 裂解法 7 附录Ⅷ G A群脑膜炎球菌多糖分子大小测定法 7.1 法 测磷法(仲裁法) 7.1.1 试剂 7.1.2 色谱柱的制备 7.1.3 色谱柱的标定 7.1.4 测定法 7.2 第二法 仪器法 7.2.1 色谱柱的标定 7.2.2 测定法 7.3 【附注】 8 附录Ⅷ H 伤寒Vi多糖分子大小测定法 8.1 试剂、色谱柱的制备与色谱柱标定 8.2 测定法 8.3 【附注】 9 附录Ⅷ I 牛血清白蛋白残留量测定法 9.1 供试品溶液的制备 9.2 干扰试验 9.3 测定法 9.4 【附注】 10 附录Ⅷ J b型流感嗜血杆菌结合多糖含量测定法 10.1 试剂 10.2 测定法 10.3 结果计算 11 附录Ⅷ K 己二酰肼含量测定法 11.1 试剂 11.2 测定法 12 附录Ⅷ L 高分子结合物含量测定法 12.1 试剂 12.2 供试品溶液的制备 12.3 测定法 12.4 结果计算 13 参考资料 1 拼音 2010nián bǎn yào diǎn sān bù fù lù Ⅷ

《中华典》(2010年版)三部附录Ⅷ

2 附录Ⅷ A 免疫印迹法

(1)TG缓冲液 称取三羟甲基15.12g与甘氨酸72g,加水溶解并稀释至500ml。4℃保存。

(2)EBM缓冲液 量取TG缓冲液20ml、甲醇40ml,加水稀释至200ml。4℃保存。

(3)TTBS缓冲液 称取三羟甲基6.05g与氯化钠4.5g,量取聚山梨酯80 0.55ml,加适量水溶解,用盐酸调pH值至7.5,加水稀释至500ml。4℃保存。

(4)底物缓冲液 称取3,3'盐15mg,加甲醇5ml与30%氢15μl,加TTBS缓冲液25ml使溶解,即得。临用现配。

2.2 检查法

照SDS聚凝胶电泳法(2010年版典三部附录Ⅳ C),供试品与阳性对照品上样量应大于100ng。取出凝胶,切去凝胶边缘,浸于EBM缓冲液中30分钟。另取与凝胶同样大小的厚滤纸6张、纤维素膜1张,用EBM缓冲液浸透。用半干胶转移仪进行转移:在电极板上依次放上湿滤纸3张、纤维素膜1张、电泳凝胶、湿滤纸3张,盖上电极板,按0.8mA/cm2纤维素膜恒电流转移45分钟。

取出纤维素膜浸入封闭液(10%新生牛血清的TTBS缓冲液,或其他适宜封闭液)封闭60分钟。弃去液体,加入TTBS缓冲液10ml,摇动加入适量的供试品抗体(参考抗体使用说明书的稀释度稀释),室温过夜。纤维素膜用TTBS缓冲液淋洗1次,再用TTBS缓冲液浸洗3次,每次8分钟。弃去液体,再加入TTBS缓冲液10ml,摇动加入适量的生物素标记的第二抗体,室温放置40分钟。纤维素膜用TTBS缓冲液淋洗1次,再用TTBS缓冲液浸洗3次,每次8汾钟。弃去液体,更换TTBS缓冲液10ml,摇动,加入适量的亲和素溶液和生物素标记的辣根物酶溶液,室温放置60分钟。纤维素膜用TTBS缓冲液淋洗1次,再用TTBS缓冲液浸洗4次,每次8分钟。弃去液体,加入适量底物缓冲液,置于室温避光条件下显色,显色程度适当时水洗终止反应。

2.3 结果判定

阳性结果应呈现明显色带。阴性结果不显色。

3 附录Ⅷ B 免疫斑点法

3.1 试剂

(1) TG缓冲液 精密称取三羟甲基15.12g与甘氨酸72g,加水溶解并稀释至500ml。4℃保存。

(2) EBM缓冲掖 量取TG缓冲液20ml、甲醇40ml,加水稀释至200ml。4℃保存。

(3) TTBS缓冲液 称取三羟甲基6.05g、氯化钠4.5g,吸取聚山梨酯80 0.55ml,加适量水溶解,用盐酸调pH值至7.5,加水稀释至500ml。4℃保存。

(4)底物缓冲液 称取3,3'盐(DAB)15mg,取甲醇5ml、30%氢15μl,溶于25ml TTBS缓冲液中。用前配制。

3.2 检查法

取纤维素膜,用EBM缓冲液浸泡15分钟,将供试品、阴性对照品(可用等量的人白蛋白)及阳性对照品点在膜上,上样量应大于10ng。室温干燥60分钟。取出纤维素膜,浸入封闭液(10%新生牛血清的TTBS缓冲液,或其他适宜的封闭液)封闭60分钟。弃去液体,加入TTBS缓冲液10ml,摇动加入适量的供试品抗体(参考抗体使用说明书的稀释度稀释),室温过夜。纤维素膜用TTBS缓冲液淋洗1次,再用TTBS缓冲液浸洗3次,每次8分钟。弃去液体,更换TTBS缓冲液10ml,摇动加入适量的生物素标记的第二抗体,室温放置40分钟。纤维素膜用TTBS缓冲液淋洗1次,再用TTBS缓冲液浸洗3次,每次8分钟。弃去液体,更换TTBS缓冲液10ml,摇动加入适量的亲和素溶液和生物素标记的辣根物酶溶液,室温放置60分钟。纤维素膜用TTBS缓冲液淋洗1次,再用TTBS缓冲液浸洗4次,每次8分钟。弃去液体,加入适量底物缓冲液置于室温避光条件下显色,显色程度适当时水洗终止反应。

阳性结果应呈现明显色带。阴性结果不显色。

4 附录Ⅷ C 免疫双扩散法

本法系在琼脂糖凝胶板上按一定距离打数个小孔,在相邻的两孔内分别加入抗原与抗体,若抗原、抗体互相对应,浓度、比例适当,则一定时间后,在抗原与抗体孔之间形成免疫复合物的沉淀线,以此对供试品的特异性进行检查。

4.1 供试品溶液的制备

用生理氯化钠溶液将供试品的蛋白质浓度稀释至适当浓度。

4.2 试剂

(1)0.5%氨基黑染色剂 称取氨基黑10B0.5g,加甲醇50ml、冰醋酸10ml与水40ml的混合液,溶解,即得。

(2)脱色液 量取乙醇45ml、冰醋酸5ml与水50ml混合均匀,即得。

4.3 检查法

将完全溶胀的1.5%琼脂糖溶液倾倒于水平玻板上(每平方厘米加0.19ml琼脂糖),凝固后,按下图打孔,直径3mm,孔距3mm(方阵型)。根据需要确定方阵型图数量。孔加入抗血清,周边孔加入供试品溶液,并留1孔加入相应阳性对照血清。每孔加样20μl,然后置水平湿盒中,37℃水平扩散24小时。用生理氯化钠溶液充分浸泡琼脂糖凝胶板,以除去未结合蛋白质。将浸泡好的琼脂糖凝胶板放入0.5%氨基黑溶液中染色。用脱色液脱色至背景无色,沉淀线呈清晰蓝色为止。用适当方法保存或图谱。

图 方阵型

4.4 结果判定

各阳性对照出现相应的沉淀线则试验成立,供试品与人血清(血浆)抗体之间应出现相应沉淀线,表示两者具有同源性。

5 附录Ⅷ D 免疫电泳法

本法系将供试品通过电泳分离成区带的各抗原,然后与相应的抗体进行双相免疫扩散,当两者比例合适时形成可见的沉淀弧。将沉淀弧与已知标准抗原、抗体生成的沉淀弧的位置和形状进行比较,即可分析供试品中的成分及其性质。

5.1 试剂

(1)缓冲液(pH8.6) 称取4.14g与钠23.18g,加适量水,加热使溶解,冷却至室温,再加叠氮钠0.15g,加水使溶解成1500ml。

(2)0.5%氨基黑染液 称取氨基黑10B 0.5g.加甲醇50ml、冰醋酸10ml与水40ml的混合液,溶解。

(3)1.5%琼脂糖溶液 称取琼脂糖1.5g,加水50ml与缓冲液50ml,加热使溶胀完全。

(4)脱色液 量取乙醇45ml、冰醋酸5ml与水50ml,混合均匀。

(5)溴酚蓝指示液 称取溴酚蓝50mg,加水使溶解成100ml。

5.2 对照品

正常人血清或其他适宜的对照品。

5.3 供试品溶液的制备

用生理氯化钠溶液将供试品蛋白质浓度稀释成0.5%。

5.4 检查法

(1)电泳时应有冷却系统,否则琼脂糖凝胶会出现干裂。

(2)用生理氯化钠溶液浸泡应充分,否则背景不清晰。

6 附录Ⅷ E 肽图检查法

本法系通过蛋白酶或化学物质裂解蛋白质后,采用适宜的分析方法鉴定蛋白质一级结构的完整性和准确性。

6.1 法 胰蛋白酶裂解-反相高效液相色谱法

照高效液相色谱法(2010年版典三部附录Ⅲ B)测定。

6.1.1 色谱条件

以蛋白质与多肽分析用辛烷基硅烷键合硅胶或硅烷键合硅胶为填充剂;柱温为30℃±5℃,对照品与供试品保存温度为2~8℃;以0.1%的水溶液为流动相A液,以0.1%的乙腈溶液为流动相B液,流速为每分钟1ml,梯度洗脱70分钟(A液从~30%,B液从0~70%),检测波长为214nm。

6.1.2 检查法

取供试品溶液及对照品溶液(均为每1ml中含1mg的溶液,如供试品和对照品浓度不够,则应浓缩至相应的浓度),分别用1%碳酸氢铵溶液充分透析,按1:50 (mg/mg)加入胰蛋白酶溶液[取苯丙氨酰氯甲酮处理过的(或序列分析纯)胰蛋白酶适量,加1%碳酸氢铵溶液溶解,制成每1ml中含0.1mg的溶液]到供试品溶液与对照品溶液中,于37℃保温16~24小时后,按1: 10加入50%,以每分钟10000转离心5分钟(或用0.45μm滤膜滤过),精密量取上清液100μl,分别注入液相色谱仪,梯度洗脱,记录色谱图。将供试品溶液的图谱与对照品溶液的图谱进行比较,即得。

6.2 第二法 裂解法

检查法 取供试品与对照品适量(约相当于蛋白质50μg),用水透析16小时,冷冻干燥,加裂解液(称取0.3g,加甲酸(70→100)1ml使溶解]20μl溶解,室温放置24小时,裂解物加水180μl,再冷冻干燥。冻干的裂解物用水复溶至适当浓度.照SDS聚凝胶电泳法(附录Ⅳ C)(胶浓度20%)进行电泳,用银染法染色。

将供试品图谱与对照品图谱进行比较,即得。

7 附录Ⅷ G A群脑膜炎球菌多糖分子大小测定法 7.1 法 测磷法(仲裁法)

本法用于测定细菌荚膜多糖在色谱柱中的分配系数(KD)和多糖在规定KD值以前的回收率。

7.1.1 试剂

(1)流动相 称取氯化钠11.7g、叠氮钠0.1g,加水使溶解成1000ml,混匀,用0.1mol/L调pH值至7.0。

(2)蓝色葡聚糖2000溶液 称取蓝色葡聚糖200020mg,加流动相使溶解成10ml。

(3)维生素B12溶液 称取10mg维生素B12,加流动相使溶解成10ml。

7.1.2 色谱柱的制备

取琼脂糖4B凝胶或琼脂糖CL4B凝胶约200ml,加流动相400ml充分搅拌,放置约1小时使其沉淀,倾去上层含悬浮颗粒的悬液。如此反复3~5次后,加流动相200ml,混匀,抽去凝胶中的空气,装于1.5cm×90cm色谱柱中,约87cm高,用流动相洗脱,流速为每小时15~20ml,以2~3倍柱床体积的流动相洗脱(约500ml),使柱床平衡。

7.1.3 色谱柱的标定

取蓝色葡聚糖2000溶液1ml,加至已平衡的色谱柱中,以流动相洗脱,流速每小时15~20ml,用组分收集器收集洗脱液,每管收集3~5ml,照紫外-可见分光光度法(附录Ⅱ A),在波长260nm处测定各管洗脱液的吸光度,以吸光度为纵坐标,洗脱液体积(ml)为横坐标分别作图,波长260nm处的峰顶洗脱液体积为空流体积VO。

量取维生素B12溶液1ml,自“加至已平衡的色谱柱中”起,同法作,370nm波长处的峰顶洗脱液体积为柱床体积Vi。

7.1.4 测定法

取供试品约1ml(含多糖抗原3~5mg.如为冻干制品可用流动相溶解),加至已标定的色谱柱中,用流动相洗脱,用组分收集器收集洗脱液,每管收集5ml,照磷测定法(2010年版典三部附录Ⅶ A)测定每管洗脱液的磷含量。以供试品每管洗脱液的磷含量为纵坐标,洗脱液体积(ml)为横坐标作图,主峰峰顶洗脱液体积为Ve。

式中 KD为供试品分配系数;

Ve为供试品洗脱液体积,ml;

VO为空流体积,ml;

Vi为柱床体积,ml。

计算供试品在KD值<0.5的多糖回收率:

式中RX为KD值<0.5供试品的多糖回收率,%;

AX为供试品在KD值<0.5各管洗脱液的磷含量之和;

A为供试品所有管洗脱液的磷含量之和。

7.2 第二法 仪器法

试剂与色谱柱的制备同法。

7.2.1 色谱柱的标定

量取蓝色葡聚糖2000溶液1ml与维生素B12溶液0.2ml;混匀后加至已平衡的色谱柱中,以流动相洗脱,流速每小时15~20ml,检测波长206nm,用组分收集器收集洗脱液,记录色谱图,色谱图中,峰为篮色葡聚糖2000峰,峰顶的洗脱液体积为空流体积VO;第二峰为维生素B12峰,峰顶的洗脱液体积为柱床体积Vi。

7.2.2 测定法

取供试品约1ml(含多糖抗原3~5mg,如为冻干制品可用流动相溶解),加至已标定的色谱柱中,用流动相洗脱,流速为每小时15~20ml,检测波长206nm,用组分收集器收集洗脱液,记录色谱图,即得。按下式计算:

式中 KD为供试品分配系数;

VO为空流体积,ml;

Vi为柱床体积,ml。

计算供试品在KD值<0.5的多糖回收率:

式中RX为KD值<0.5供试品的多糖回收率,%;

AX为供试品在KD值<0.5的色谱图面积;

At为供试品色谱图总面积。

过柱作在10~20℃进行。

8 附录Ⅷ H 伤寒Vi多糖分子大小测定法

本法用于测定细菌荚膜多糖在色谱柱中的分配系数(KD)和多糖在规定KD值以前的回收率。

8.1 试剂、色谱柱的制备与色谱柱标定

同附录Ⅷ G 第二法。

8.2 测定法

取供试品约1ml(含多糖抗原3~5mg),加至已标定的色谱柱中,用流动相洗脱,流速为每小时15~20ml,用组分收集器收集5.5 注意事项洗脱液,每管3~5ml。照O乙酰基测定法(2010年版典三部附录Ⅵ F),测定每管洗脱液中O乙酰基的含量,求出O乙酰基含量时的洗脱体积,即为多糖主峰峰顶洗脱体积Ve。

式中KD为供试品分配系数;

VO为空流体积,ml;

Vi为柱床体积,ml。

计算供试品在KD值≤0.25的多糖回收率:

式中RX为KD值≤0.25供试品的多糖回收率,%;

AX为供试品在KD值≤0.25各管洗脱液等体积合并液的O乙酰基含量;

At为供试品所有管洗脱液等体积合并液的O乙酰基含量。

人体体表面积计算器 BMI指数计算及评价 女性安全期计算器 预产期计算器 孕期体重增长正常值 孕期用安全性分级(FDA) 五行八字 血压评价 体温水平评价 糖尿病饮食建议 临床生化常用单位换算 基础代谢率计算 补钠计算器 补铁计算器 处方常用拉丁文缩写速查 代动力学常用符号速查 有效血浆渗透压计算器 乙醇摄入量计算器

医学百科,马上计算!

8.3 【附注】

过柱作在10~20℃进行。

本法系采用酶联免疫法测定供试品中残余牛血清白蛋白含量。

9.12.1 试剂 供试品溶液的制备

供试品如为冻干剂型,检测前应按标示量复溶后混匀,室温静置30分钟,检测前应再次混匀。供试品如为液体剂型可直接用于检测。

9.2 干扰试验

制备溶液Ⅰ(供试品倍比稀释)、溶液Ⅱ(供试品和30ng/ml的内控标准品等量混合)和溶液Ⅲ(30ng/ml的内控标准品倍比稀释)。当供试品溶液BSA含量高于试剂盒测定范围中点时,则2倍稀释后制备溶液Ⅰ和溶液Ⅱ。溶液Ⅰ、溶液Ⅱ可倍比稀释测定,溶液Ⅲ应多孔测定(至少10孔以上),并在试验间均匀添加。按测定法作,分别测定溶液Ⅰ、溶液Ⅱ、溶液Ⅲ的BSA含量,溶液Ⅰ与溶液Ⅱ的含量之应在溶液Ⅲ含量测定值的95%可信区间内,表明供试品不会对该检测法产生干扰作用。

9.3 测定法

按试剂盒说明书进行,并采用试剂盒提供的供试品稀释液稀释供试品,供试品应至少进行2个稀释度测定,每个稀释度做双孔平行测定。试剂盒标准品的吸光度、内控参考品测定值、标准品线性相关系数、双孔测定吸光度均应在试剂盒要求范围内,试验有效。以标准品溶液的浓度对其相应的吸光度作直线回归,将供试品的吸光度代入直线回归方程,再乘以稀释倍数,计算出供试品中BSA含量。

9.4 【附注】

(1)当同一供试品的低稀释度吸光度明显低于高稀释度吸光度时,可能存在HOOK效应或作失误,需重试或调整稀释倍数进行检测。

(2)测定BSA含量的容器具应专用,防止实验室中BSA污染。

本法系依据可溶性糖经无机酸处理脱水产生糖醛(戊糖)或糖醛衍生物,生成物能与酚类化合物缩合生成有色物质,以此测定多糖的含量。

10.1 试剂

(1)0.1%盐酸溶液 准确称取(FeCl3·6H2O)0.1g,放入清洁的试剂瓶内,加盐酸100ml,待溶解后置2~8℃冰箱保存。

(2)地衣酚(3,5甲苯)[1]乙醇溶液 称取地衣酚1g,放入10ml量瓶中,加95%乙醇至10ml。临用前配制。

(3) 25μg/ml核糖对照品溶液 称取D核糖1.25mg,置50ml量瓶中,加水溶解并稀释至刻度。

10.2 测定法

量取1ml水,加入5ml 0.1%盐酸溶液,混匀后再加入0.4ml地衣酚乙醇溶液,混匀。水浴5分钟后置冰浴,在波长670nm处测定吸光度,作为空白对照。

先将供试品用水稀释至核糖含量不高于25μg/ml,作为供试品溶液,量取1.0ml自“加入5ml 0.1%盐酸溶液”起,同法作。

分别取核糖对照品溶液0.1ml、0.2ml、0.4ml、0.6ml、0.8ml、1.0ml于10ml试管中,每管依次加水0.9ml、0.8ml、0.6ml、0.4ml、0.2ml、0ml,自“加入5ml 0.1%盐酸溶液”起,同法作。

10.3 结果计算

以核糖对照品溶液的浓度对其相应的吸光度作直线回归,求得直线回归方程。将供试品溶液的吸光度代入直线回归方程,求出供试品溶液的核糖含量。

供试品多糖含量(μg/ml)a×n/0.41

式中a为供试品溶液的核糖含量,μg/ml;

n为供试品稀释倍数。

11 附录Ⅷ K 己二酰肼含量测定法

本法系依据在四硼酸钠存在的条件下,己二酰肼(ADH)中的氨基基团能与(TNBS)发生显色反应,采用紫外-可见分光光度法测定b型流感嗜血杆菌多糖衍生物中己二酰肼的含量。

11.1 试剂

(1)己二酰肼对照品贮备液(1mg/ml) 精密称定己二酰肼0.100g,加水定容至100ml,于20℃保存。

(2)己二酰肼对照品工作液(20μg/ml) 精密量取ADH对照品贮备液0.2ml,加水定容至10ml。

(3)5%四硼酸钠溶液 称取四硼酸钠(Na2B4O7·10H2O) 47.35g[1],加水定容至500ml,于室温保存。

(4) 3% TNBS溶液 量取TNBS 5ml,加水定容至50ml,于20℃保存。

11.2 测定法

量取5%四硼酸钠溶液1.0ml,加水1ml,混匀,再加入3% TNBS溶液0.3ml,混匀,于室温放置15分钟,在波长500nm处测定吸光度,作为空白对照。先将供试品用水稀释至己二酰肼浓度不高于20μg/ml,作为供试品溶液,然后取1.0ml,加入5%四硼酸钠溶液1.0ml,自“加入3% TNBS溶液0.3ml”起同法作。

分别取己二酰肼对照品工作液0.2ml、0.4ml、0.6ml、0.8ml、1.0ml于试管中,每管依次加水0.8ml、0.6ml、0.4ml、0.2ml、0ml,加入5%四硼酸钠溶液1.0ml,自“加入3% TNBS溶液0.3ml”起同法作。结果计算 以己二酰肼对照品工作液的浓度对其相应的吸光度作直线回归,求得直线回归方程,将供试品溶液的吸光度代入直线回归方程,求出供试品溶液的己二酰肼含量,根据稀释倍数计算供试品的己二酰肼含量。

12 附录Ⅷ L 高分子结合物含量测定法

本法系利用高分子结合物、低分子结合物及游离多糖在不同乙醇浓度下,沉淀分离,采用紫外-可见分光光度法测定磷含量,计算高分子结合物的含量。

12.1 试剂

(1) 5mol/L氯化钠溶液 精密称定氯化钠29.22g,加水溶解并稀释至100ml,室温保存。

(2) 1.5mol/L硫酸 于1体积98%的硫酸中加入11体积的水,混匀。

(3) 2.5%钼酸铵 称取钼酸铵2.65g[1],加水溶解并稀释至100ml。

(4)10%抗坏血酸 称取抗坏血酸10g,加水溶解并稀释至100ml。

(5)矿化试剂 硫酸与70%等体积混合制得。

(6)产色试剂 水、1.5mol/L硫酸、2.5%钼酸铵、10%抗坏血酸,按2:1:1:1体积比混合配制。

(7)80μg/ml磷对照品贮备液 精密称定经100℃干燥的磷酸氢二钠0.3665g或磷酸二氢钾0.3509g[1],加水500ml、5mol/L硫酸溶液10ml溶解,补加水至1000ml。临用时,将贮备液做20倍稀释,即为4μg/ml磷对照品工作液。

(8)1.0mol/L 称取4g,加水溶解并稀释至100ml。

(1)分步沉淀 原液用生理氯化钠溶液稀释至多糖含量20~28μg/ml或成品3ml,加入5mol/L氯化钠溶液0.75ml,混匀后加入15ml,于20℃冰箱放置72~96小时,以每分钟8000转4℃离心90分钟,吸取上清液为供试品溶液2;于沉淀中加入50%乙醇溶液0.5ml,加玻璃珠,混合后室温放置1小时;再加入50%乙醇溶液1.5ml,混合后室温放置2小时,然后以每分钟8000转8℃离心l小时,吸取1.8ml上清液为供试品溶液3;沉淀再加入1.0mol/L0.5ml,混合后室温放置1小时,加水1.25ml,作为供试品溶液4。

(2)取多糖含量20~28μg/ml的原液或成品1.0ml为供试品1。

(3)供试品溶液的矿化 分别量取1.0ml供试品1、1.5ml供试品溶液2、0.7ml供试品溶液3、0.5ml供试品溶液4各2份;分别加入矿化试剂0.15ml,置150℃干燥1小时,然后升温至180℃干燥30分钟,再升温至℃干燥1小时。

12.3 测定法

量取水1.95ml,加矿化试剂50μl后加2.0ml产色试剂,混匀后置37℃水浴2小时,在波长825nm处测定吸光度,作为空白对照。

于矿化好的供试品溶液中加水1.85ml,加产色试剂2.0ml,混匀后置37℃水浴2小时,在波长825nm处测定吸光度。

分别量取磷对照品工作液0.1ml、0.2ml、0.4ml、0.8ml、1.0ml于试管中,每管依次加水1.85ml、1.75ml、1.55ml、1.15ml、0.95ml;然后每管分别加入矿化试剂50μl后加2.0ml产色试剂,混匀后置37℃水浴2小时,在波长825nm处测吸光度。

12.4 结果计算

以磷对照品溶液的浓度对其相应的吸光度作直线回归,求得直线回归方程。将供试品溶液的吸光度代入直线回归方程,求出磷含量。

供试品磷含量(μg/ml)分别为:

P1 (A1×3)/1.0

P2(A2×18. 75)/1.5

P3 (A3×2.0)/0.7

P4 (A4×2.0)/0.5(P3×10)/100

试验有效性 80%≤P1/(P2+P3+P4)≤120%

供试品高分子结合物含量(%)P4/(P2+P3+P4)×100

供试品游离多糖含量(%)[1P4/(P2+P3+P4)]×100

什么是定性分析?

问题一:什么叫做定性分析? 定性分析就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。

定性分析常被用于对事物相互作用的研究中。它主要是解决研究对象“有没有”或者“是不是”的问题。我们要认识某种教育现象、教育对象,首先就要认识这个对象所具有的性质特征,以便把它与其他的对象区别开来。所以,定性分析是一种最根本、最重要的分析研究过程。定性分析有两种不同的层次:一种是研究的结果本身就是定性的描述材料,没有数量化或者数量化水平较低;另一种是建立在严格的定量分析基础上的定性分析。从科学认识的过程看,任何研究或分析一般都是从研究事物的质的别开始,然后再去研究它们的量的规定,在量的分析的基础上,再作的定性分析,得出更加可靠的分析。

问题二:什么是定性分析与定量分析? 定性分析的主要任务是确定物质(化合物)的组分,只有确定物质的组成后,才能选择适当的分析方法进行定量分析,如果只是为了检测某种离子或元素是否存在,为分别分析;如果需要经过一系列反应去除其他干扰离子、元素或要求了解有哪些其他离子、元素存在,为系统分析。

定性分析主要是解决研究对象“有没有”“是不是”的问题,定胆研究动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。以阴离子交换剂为例,其交换过程可表示如下: X-(溶剂中) (树脂-R4N Cl-)=== (树脂-R4N X-) Cl- (溶剂中) 当交换达平衡时: KX=[-R4N X-][ Cl-]/[-R4N Cl-][ X-] 分配系数为: DX=[-R4N X-]/[X-]= KX [-R4N Cl-]/[Cl-] [讨论:DX与保留值的关系] 凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。分为三个过程:1、分析综合2、比较3、抽象和概括

定量分析起源于分析化学的一个分支。测定物质中各成分的含量使用方法不同,可分重量分析、容量分析和仪器分析三类。因分析试样用量和被测成分不同,又可分为常量分析、半微量分析、微量分析、超微量分析和痕量分析等。

含义

定量分析 指分析一个被研究对象所包含成分的数量关系或所具备性质间的数量关系;也可以对几个对象的某些性质、特征、相互关系从数量上进行分析比较,研究的结果也用“数量”加以描述。

问题三:什么是定性分析?什么是定量分析?( 定性分析 定性分析就是对研究对象进行“质”的方面的分析。具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。定性分析主要是解决研究对象“有没有”“是不是”的问题,定性研究分为三个过程:1、分析综合 2、比较 3、抽象和概括定量分析定量分析:对现象的数量特征、数量关系与数量变化的分析。其功能在于揭示和描述现象的相互作用和发展趋势。定性--用文字语言进行相关描述定量--用数学语言进行描述定性分析与定量分析是人们认识事物时用到的两种分析方式[1]。 定性分析的理念早在古希腊时代就得到了很好的展开,那个时候的一批的学者,在自己的研究之中都是给自己所研究的自然世界给以物理解释。例如:亚里士多德研究过许多的自然现象,但在他厚厚的著作之中,却发现不了一个数学公式。他对每一个现象的都是描述性质的,对发现的每一个自然定理都是性质定义。虽然这种认识对我们认识功不可灭,但却缺乏深入思考的基础,因为从事物的一种性质延伸到另一种性质,往往是超出了人类的认识能力。 而把定量分析作为一种分析问题的基础思维方式始于伽利略,作为近代科学的奠基者,伽利略次把定量分析全面展开在自己的研究之中,从动力学到天文学,伽利略抛弃了以前人们只对事物原因和结果进行主观臆测成分居多的分析,而代之以实验,数学符号,公式,可以这样说,“伽利略追求描述的决定是关于科学方的最深刻最有成效的变革。它的重要性,就在于把科学置于科学的保护之下。”而数学是关于量的科学。可以这样说,一门科学只有在成功的运用了数学的时候,才能称得上是一门科学。从理性的发展过程来看,伽利略提出的以定量代替定性的科学方法是人类认识对象由模糊变得清晰起来,由抽象变得具体,使得人类的理性在定性之上又增加了定量的特征,而且由于这种替代,那些与定量的无关的概念,如本质起源性质等概念在一定的领域内和一定的范围内被空间时间重量速度加速度惯性力能能量等全新的概念替代。 因而,定量分析作为一种古已有之但是没有被准确定位的思维方式,其优势相对于定性分析的是很明显,它把事物定义在了人类能理解的范围,由量而定性。定性分析与定量分析的关系定性分析与定量分析应该是统一的,相互补充的;; 定性分析是定量分析的基本前提,没有定性的定量是一种盲目的、毫无价值的定量;; 定量分析使之定性更加科学、准确,它可以促使定性分析得出广泛而深入的结论定量分析是依据统计数据,建立数学模型,并用数学模型计算出分析对象的各项指标及其数值的一种方法。 定性分析则是主要凭分析者的直觉、经验,凭分析对象过去和现在的延续状况及的信息资料,对分析对象的性质、特点、发展变化规律作出判断的一种方法。相比而言,前一种方法更加科学,但需要较高深的数学知识,而后一种方法虽然较为粗糙,但在数据资料不够充分或分析者数学基础较为薄弱时比较适用,更适合于一般的投资者与经济工作者。但是必须指出,两种分析方法对数学知识的要求虽然有高有低,但并不能就此把定性分析与定量分析截然划分开来。事实上,现代定性分析方法同样要采用数学工具进行计算,而定量分析则必须建立在定性预测基础上,二者相辅相成,定性是定量的依据,定量是定性的具体化,二者结合起来灵活运用才能取得效果。 不同的分析方法各有其不同的特点与性能,但是都具有一个共同之处,即它们一般都是通过比较对照来分析问题和说明问题的。正是通过对各种指标的比较或不同时期同一指标的对照才反映出数量的多少、质量的优劣、效率的高低、消耗的大小......>>

问题四:什么是定性分析和定量分析? 定量研究:就是通过统计调查法或实验法, 像自然科学那样建立研究假设,收集的数据资料,然后进行统计分析和检验的研究过程。定量分析作为一种古已有之但是没有被准确定位的思维方式, 其优势相对于定性分析的确很明显, 它把事物定义在了人类能理解的范围,由定量而定性。

定性研究是在反实证主义理论影响下形成的一种科学研究方法。它趋向于运用访问、观察和文献法收集资料, 并依据主观的理解和定性分析进行研究的过程。定性研究强调人类行为是一种有意义的行动,人们对现实的建构是在主体以及参与互动的他人对客体赋予意义的基础上共同完成的,日常生活中具有公识的规则或知识也由此产生。对这些规则或知识及其产生过程, 很难用定量的方式进行研究。定性分析就是对研究对象进行“质”的方面的分析,具体地说是运用归纳和演绎、分析与综合以及抽象与概括等方法, 对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律,由定性而定量。

问题五:什么是定性分析法? 定性研究方法(Qualitative Rese3.3 结果判定arch Mod) 定性研究方法是根据现象或事物所具有的属性和在运动中的矛盾 变化,从事物的内在规定性来研究事物的一种方法或角度。 它以普遍承认的公理、一套演绎逻辑和大量的历史事实为分析基础, 从事物的矛盾性出发,描述、阐释所研究的事物。进行定性研究, 要依据一定的理论与经验,直接抓住事物特征的主要方面, 将同质性在数量上的异暂时略去。

问题六:定量分析与定性分析的定义与区别 定量研究应该是要寻求将数据定量表示的方法,并要采用一些统计分析的形式。一般考虑进行一项新的调研项目时,定量研究之前常常都要以适当的定性研究开路。有时候定性研究也用于解释由定量分析所得的结果。

定性研究是探索性研究的另一主要方法。调研者利用定性研究来定义问题或寻找处理问题的途径。在寻找处理问题的途径时,定性研究常常用于制定假设或是确定研究中应包括的变量。有时候定性研究和二手资料分析可以构成调研项目的主要部分。因此,掌握定性研究的基本方法对调研者来说是很必要的。

色谱法进行定量分析和定性分析

基于 混合 物 各组 分在体系中 两相 的物 理化学性能异(如吸附、分配异等)而进行分离和分析的方法。公认俄国M.C.茨维特为色谱法的创始人。 色谱法体系中的两相作相对运动时,通常其中一个相是固定不动的 ,称为固定相 ;另一相是移动的 , 称为流动相。在色谱分析过程中,物质的迁移速度取决于它们与固定相和流动相的相对作用力。溶质和两相的吸引力是分子间的作用力,包括色散力、诱导效应、场间效应、氢键力和斯酸碱相互作用。对于离子,还有离子间的静电吸引力。被较强吸引在固定相上的溶质相对滞后于较强地吸引在流动相中的溶质,随着移动的反复进行与多次分配,使混合物中的各组分得到分离。 色谱分析法的分类比较复杂。根据流动相和固定相的不同,色谱法分为气相色谱法和液伐色谱法。①气相色谱法的流动相是气体 ,又可分为 : 气固色谱法 ,其流动相是气体,固定相为固体;气液色谱法,其流动相是气体,固定相是涂在惰性固体上的液体。②液相色谱法的流动相是液体,又可分为液固色谱法,其流动相是液体,固定相是固体;②液液色谱法,其流动相和固定相均是液体。按吸附剂及其使用形式可分为柱色谱、纸色谱和薄层色谱。按吸附力可分为吸附色谱、离子交换色谱、分配色谱和凝胶渗透色谱。按色谱作终止的方法可分为展开色谱和洗脱色谱。按进样方法可分为区带色谱、迎头色谱和顶替色谱。不能做定性分析

问题七:什么是定量分析 定性分析与定量分析是人们认识事物时用到的两种分析方式。定性分析的理念早在古希腊时代就得到了很好的展开,那个时候的一批的学者,在自己的研究之中都是给自己所研究的自然世界给以物理解释。例如:亚里士多德研究过许多的自然现象,但在他厚厚的著作之中,却发现不了一个数学公式。他对每一个现象的都是描述性质的,对发现的每一个自然定理都是性质定义。虽然这种认识对我们认识功不可灭,但却缺乏深入思考的基础,因为从事物的一种性质延伸到另一种性质,往往是超出了人类的认识能力。因而,定量分析作为一种古已有之但是没有被准确定位的思维方式,其优势相对于定性分析的是很明显,它把事物定义在了人类能理解的范围,由量而定性。把定量分析作为一种分析问题的基础思维方式始于伽利略,作为近代科学的奠基者,伽利略次把定量分析全面展开在自己的研究之中,从动力学到天文学,伽利略抛弃了以前人们只对事物原因和结果进行主观臆测成分居多的分析,而代之以实验,数学符号,公式,可以这样说,“伽利略追求描述的决定是关于科学方的最深刻最有成效的变革。它的重要性,就在于把科学置于科学的保护之下。”而数学是关于量的科学。可以这样说,一门科学只有在成功的运用了数学的时候,才能称得上是一门科学。从理性的发展过程来看,伽利略提出的以定量代替定性的科学方法是人类认识对象由模糊变得清晰起来,由抽象变得具体,使得人类的理性在定性之上又增加了定量的特征,而且由于这种替代,那些与定量的无关的概念,如本质起源性质等概念在一定的领域内和一定的范围内被空间时间重量速度加速度惯性力能能量等全新的概念替代。

问题八:定量分析和定性分析是什么意思 举个例子吧。

比如说在化学中,

定性分析就是确定某物质由什么元素组成;

定量分析则是求出该物质的化学式(计算出各个元素的量)。

问题九:定性分析是什么意思? 您所说的这个词语,是属于FRM词汇的一个,掌握好FRM词汇可以让您在FRM的学习中如鱼得水,这个词的翻译及意义如下:根据非财务信息,例如管理质量、行业周期性、研发实力及劳工关系,利用主观判断评估证券的分析方法

什么是色谱法?请将各个专业术语也解释一下

,量出供试品主成分或内标物质峰的保留时间t(R)和半高峰宽W(h/2),按n=5.54[t(R)╱W(h/2)]^2计算色谱柱的理论板数,如果测得理论板数低于各品种项下规定的最小理论板数,应改变色谱柱的某些条件(如柱长、载体性能、色谱柱充填的优劣等),使理论板数达到要求。

色谱法是一种重要的分离分析方法,它是利用不同物质在两相中具有不同的分配系数(或吸附系数、渗透性),当两相作相对运动时,这些物质在两相中进行多次反复分配而实现分离。在色谱技术中,流动相为气体的叫气相色谱,流动相为液体的叫液相色谱。固定相可以装在柱内,也可以做成薄层。前者叫柱色谱,后者叫薄层色谱。根据色谱法原理制成的仪器叫色谱仪,目前,主要有气相色谱仪和液相色谱仪。

10 附录Ⅷ J b型流感嗜血杆菌结合多糖含量测定法

色谱法又称色谱分析、色谱分析法、层析法,是一种分离和分析方法,在分析化学、有机化学、生物化学等领域有着非常广泛的应用。色谱法利用不同物质在不同相态的选择性分配,以流动相对固定相中进行洗脱,混合物中不同的物质会以不同的速度沿固定相移动,最终达到分离的效果。

色谱过程的本质是待分离物质分子在固定相和流动相之间分配平衡的过程,不同的物质在两相之间的分配会不同,这使其随流动相运动速度各不相同,随着流动相的运动,混合物中的不同组分在固定相上相互分离。根据物质的分离机制,又可以分为吸附色谱、分配色谱、离子交换色谱、凝胶色谱、亲和色谱等类别。

液相色谱原理

12.2 供试品溶液的制备

原理主要有这几种:

7.3 【附注】

液—液分配色谱法

式中,cs—溶质在固定相中浓度;cm--溶质在流动相中的浓度; Vs—固定相的体积;Vm—流动相的体积。LLPC与GPC有相似之处,即分离的顺序取决于K,K大的组分保留值大;但也有不同之处,GPC中,流动相对K影响不大,LLPC流动相对K影响较大。 a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。 b. 反相液 — 液分配色谱法(Rrse Phase liquid Chromatography): 流动相的极性大于固定液的极性。 c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。

液—固色谱法

流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下:Xm nSa ====== Xa nSm 式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。 当吸附竞争反应达平衡时: K=[Xa][Sm]/[Xm][Sa] 式中:K为吸附平衡常数。[讨论:K越大,保留值越大。]

离子交换色谱法

(Ion-exchange Chromatography) IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流 离子交换色谱柱

离子对色谱法

(Ion Pair Chromatography) 离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原 离子色谱仪流程示意

理可用下式表示:X 水相 Y-水相 === X Y-有机相 式中:X 水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化三甲铵等);X Y---形成的离子对化合物。 当达平衡时: KXY = [X Y-]有机相/[ X ]水相[Y-]水相 根据定义,分配系数为: DX= [X Y-]有机相/[ X ]水相= KXY [Y-]水相 [讨论:DX与保留值的关系] 离子对色谱法(特别是反相)发解决了以往难以分离的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如、核苷、生物碱以及物等分离。

离子色谱法

(Ion Chromatography) 用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。 以阴离子交换树脂(R-OH)作固定相,分离阴离子(如Br-)为例。当待测阴离子Br-随流动相(NaOH)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程): 担体图示

抑制柱上发生的反应: R-H Na OH- === R-Na H2O R-H Na Br- === R-Na H Br- 可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子Br-则被转化成了相应的酸H Br-,可用电导法灵敏的检测。 离子色谱法是溶液中阴离子分析的方法。也可用于阳离子分析。

空间排阻色谱法

(Steric Exclusion Chromatography) 空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值,在色谱图上出现。

分析方法:

综述

色谱柱的填料和流动相的组分应按各品种项下的规定.常用的色谱柱填料有硅胶和化学键合硅胶。后者以硅烷键合硅胶最为常用,辛基键合硅胶次之,氰基或氨基键合硅胶也有使用;离子交换填料,用于离子交换色谱;凝胶或玻璃微球等,用于分子排阻色谱等。注样量一般为数微升。除另有规定外,柱温为室温,检测器为紫外吸收检测器。 在用紫外吸收检测器时,所用流动相应符合紫外分光光度法项下对溶剂的要求。 正文中各品种项下规定的条件除固定相种类、流动相组分、检测器类型不得任意改变外,其余如色谱柱内径、长度、固定相牌号、载体粒度、流动相流速、混合流动相各组分的比例、柱温、进化学键合固定相反应

样量、检测器的灵敏度等,均可适当改变, 以适应具体品种并达到系统适用性试验的要求。一般色谱图约于20分钟内记录完毕。 2.系统适用性试验 按各品种项下要求对仪器进行适用性试验,即用规定的对照品对仪器进行试验和调整,应达到规定的要求;或规定分析状态下色谱柱的最小理论板数、分离度和拖尾因子.

色谱柱的理论板数

在选定的条件下,注入供试品溶液或各品种项下规定的内标物质溶液,记录色谱图化学键合固定相应用

分离度

定量分析时,为便于准确测量,要求定量峰与其他峰或内标峰之间有较好的分离度。分离度(R)的计算公式为: 2[t(R2)-t(R1)] ,R= -W1+W2 式中 t(R2)为相邻两峰中后一峰的保留时间; t(R1)为相邻两峰中前一峰的保留时间; W1及W2为此相邻两峰的峰宽。 除另外有规定外,分离度应大于1.5。

拖尾因子

为保证测量精度,特别当采用峰高法测量时,应检查待测峰的拖尾因子(T)是否符合各品种项下的规定,或不同浓度进样的校正因子误是否符合要求。拖尾因子计算公式为: W(0.05h) T=-2d1 式中 W(0.05h)为0.05峰高处的峰宽; d1为峰极大至峰前沿之间的距离。 除另有规定外,T应在0.95~1.05间。 也可按各品种校正因子测定项下,配制相当于80%、100%和120%的对照品溶液,加入规定量的内标溶液,配成三种不同浓度的溶液,分别注样3次,计算平均校正因子,其相对标准偏应不大于2.0%。

朋友可以到行业内专业的网站进行交流学习!

分析测试百科网这块做得不错,气相、液相、质谱、光谱、物分析、化学分析、食品分析。这方面的专家比较多,基本上问题都能得到解答,有问题可去那提问,网址百度搜下就有。

高效液相色谱法是在经典色谱法的基础上,引用了气相色谱的理论,在技术上,流动相改为高压输送(输送压力可达4.07Pa);色谱柱是以特殊的方法用小粒径的填料填充而成,从而使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时柱后连有高灵敏度的检测器,可对流出物进行连续检测。

特点

1.高压:液相色谱法以液体为流动相(称为载液),液体流经色谱柱,受到阻力较大,为了迅速地通过色谱柱,必须对载液施加高压。一般可达150~350×105Pa。

2. 高速:流动相在柱内的流速较经典色谱快得多,一般可达1~10ml/min。高效液相色谱法所需的分析时间较之经典液相色谱法少得多,一般少于 1h 。

3. 高效:近来研究出许多新型固定相,使分离效率大大提高。

4.高灵敏度:高效液相色谱已广泛采用高灵敏度的检测器,进一步提高了分析的灵敏度。如荧光检测器灵敏度可达10-11g。另外,用样量小,一般几个微升。

5.适应范围宽:气相色谱法与高效液相色谱法的比较:气相色谱法虽具有分离能力好,灵敏度高,分析速度快,作方便等优点,但是受技术条件的限制,沸点太高的物质或热稳定性的物质都难于应用气相色谱法进行分析。而高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此不受试样挥发性的限制。对于高沸点、热稳定性、相对分子量大(大于 400 以上)的有机物(这些物质几乎占有机物总数的 75% ~ 80% )原则上都可应用高效液相色谱法来进行分离、分析。 据统计,在已知化合物中,能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。

高效液相色谱按其固定相的性质可分为高效凝胶色谱、疏水性高效液相色谱、反相高效液相色谱、高效离子交换液相色谱、高效亲和液相色谱以及高效聚焦液相色谱等类型。用不同类型的高效液相色谱分离或分析各种化合物的原理基本上与相对应的普通液相层析的原理相似。其不同之处是高效液相色谱灵敏、快速、分辨率高、重复性好,且须在色谱仪中进行。

高效液相色谱法的主要类型及其分离原理

根据分离机制的不同,高效液相色谱法可分为下述几种主要类型:

1 .液 — 液分配色谱法(Liquid-liquid Partition Chromatography)及化学键合相色谱(Chemically Bonded Phase Chromatography)

流动相和固定相都是液体。流动相与固定相之间应互不相溶(极性不同,避免固定液流失),有一个明显的分界面。当试样进入色谱柱,溶质在两相间进行分配。达到平衡时,服从于下式:

a. 正相液 — 液分配色谱法(Normal Phase liquid Chromatography): 流动相的极性小于固定液的极性。

b. 反相液 — 液分配色谱法(Rrse Phase liquid Chromatography): 流动相的极性大于固定液的极性。

c. 液 — 液分配色谱法的缺点:尽管流动相与固定相的极性要求完全不同,但固定液在流动相中仍有微量溶解;流动相通过色谱柱时的机械冲击力,会造成固定液流失。上世纪70年代末发展的化学键合固定相(见后),可克服上述缺点。现在应用很广泛(70~80%)。

2 .液 — 固色谱法

流动相为液体,固定相为吸附剂(如硅胶、氧化铝等)。这是根据物质吸附作用的不同来进行分离的。其作用机制是:当试样进入色谱柱时,溶质分子 (X) 和溶剂分子(S)对吸附剂表面活性中心发生竞争吸附(未进样时,所有的吸附剂活性中心吸附的是S),可表示如下:

Xm + nSa ====== Xa + nSm

式中:Xm--流动相中的溶质分子;Sa--固定相中的溶剂分子;Xa--固定相中的溶质分子;Sm--流动相中的溶剂分子。

当吸附竞争反应达平衡时:

K=[Xa][Sm]/[Xm][Sa]

式中:K为吸附平衡常数。[讨论:K越大,保留值越大。]

3 .离子交换色谱法(Ion-exchange Chromatography)

IEC是以离子交换剂作为固定相。IEC是基于离子交换树脂上可电离的离子与流动相中具有相同电荷的溶质离子进行可逆交换,依据这些离子以交换剂具有不同的亲和力而将它们分离。

以阴离子交换剂为例,其交换过程可表示如下:

X-(溶剂中) + (树脂-R4N+Cl-)=== (树脂-R4N+ X-) + Cl- (溶剂中)

当交换达平衡时:

KX=[-R4N+ X-][ Cl-]/[-R4N+Cl-][ X-]

分配系数为:

DX=[-R4N+ X-]/[X-]= KX [-R4N+Cl-]/[Cl-]

[讨论:DX与保留值的关系]

凡是在溶剂中能够电离的物质通常都可以用离子交换色谱法来进行分离。

4 .离子对色谱法(Ion Pair Chromatography)

离子对色谱法是将一种 ( 或多种 ) 与溶质分子电荷相反的离子 ( 称为对离子或反离子 ) 加到流动相或固定相中,使其与溶质离子结合形成疏水型离子对化合物,从而控制溶质离子的保留行为。其原理可用下式表示:

X+水相 + Y-水相 === X+Y-有机相

式中:X+水相--流动相中待分离的有机离子(也可是阳离子);Y-水相--流动相中带相反电荷的离子对(如氢氧化四丁基铵、氢氧化三甲铵等);X+Y---形成的离子对化合物。

当达平衡时:

KXY = [X+Y-]有机相/[ X+]水相[Y-]水相

根据定义,分配系数为:

DX= [X+Y-]有机相/[ X+]水相= KXY [Y-]水相

[讨论:DX与保留值的关系]

离子对色谱法(特别是反相)发解决了以往难以分离的分离问题,诸如酸、碱和离子、非离子混合物,特别是一些生化试样如、核苷、生物碱以及物等分离。

用离子交换树脂为固定相,电解质溶液为流动相。以电导检测器为通用检测器,为消除流动相中强电解质背景离子对电导检测器的干扰,设置了抑制柱。试样组分在分离柱和抑制柱上的反应原理与离子交换色谱法相同。

以阴离子交换树脂(R-OH)作固定相,分离阴离子(如Br-)为例。当待测阴离子Br-随流动相(NaOH)进入色谱柱时,发生如下交换反应(洗脱反应为交换反应的逆过程):

抑制柱上发生的反应:

R-H+ + Na+OH- === R-Na+ + H2O

R-H+ + Na+Br- === R-Na+ + H+Br-

可见,通过抑制柱将洗脱液转变成了电导值很小的水,消除了本底电导的影响;试样阴离子Br-则被转化成了相应的酸H+Br-,可用电导法灵敏的检测。

离子色谱法是溶液中阴离子分析的方法。也可用于阳离子分析。

6 .空间排阻色谱法(Steric Exclusion Chromatography)

空间排阻色谱法以凝胶 (gel) 为固定相。它类似于分子筛的作用,但凝胶的孔径比分子筛要大得多,一般为数纳米到数百纳米。溶质在两相之间不是靠其相互作用力的不同来进行分离,而是按分子大小进行分离。分离只与凝胶的孔径分布和溶质的流动力学体积或分子大小有关。试样进入色谱柱后,随流动相在凝胶外部间隙以及孔穴旁流过。在试样中一些太大的分子不能进入胶孔而受到排阻,因此就直接通过柱子,首先在色谱图上出现,一些很小的分子可以进入所有胶孔并渗透到颗粒中,这些组分在柱上的保留值,在色谱图上出现。

高效液相色谱仪主要有进样系统、输液系统、.分离系统、检测系统和数据处理系统,下面将分别叙述其各自的组成与特点。

一般采用隔膜注射进样器或高压进样间完成进样作,进样量是恒定的。这对提高分析样品的重复性是有益的。

2.输液系统

该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4X107Pa,流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、PH值,或改用竞争性或变性剂等。这就可使各种物质(即使一个基团的别或是同分异构体)都能获得有效分离。

3.分离系统

该系统包括色谱柱、连接管和恒温器等。色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管),内径为2~5mm,由"优质不锈钢或厚壁玻璃管或钛合金等材料制成,住内装有直径为5~10μm粒度的固定相(由基质和固定液构成).固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如硅胶表面的硅酸基因基本已除去)、多孔性(孔径可达1000?)和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样),或者用化学法偶联各种基因(如磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。因此,这类固定相对结构不同的物质有良好的选择性。例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。

另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小,微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。这也进一步证明基质粒度小,会提高分辨率的道理。

再者,高效液相色谱的恒温器可使温度从室温调到60C,通过改善传质速度,缩短分析时间,就可增加层析柱的效率。

4.检测系统

高效液相色谱常用的检测器有紫外检测器、示折光检测器和荧光检测器三种。

(1)紫外检测器

该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。其特点:使用面广(如蛋白质、、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10g/ml);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。

(2)示折光检测器

凡具有与流动相折光率不同的样品组分,均可使用示折光检测器检测。目前,糖类化合物的检测大多使用此检测系统。这一系统通用性强、作简单,但灵敏度低(检测下限为10-7g/ml),流动相的变化会引起折光率的变化,因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。

(3)荧光检测器

(5)数据处理系统

该系统可对测试数据进行采集、贮存、显示、打印和处理等作,使样品的分离、制备或鉴定工作能正确开展。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 12345678@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息