1. 首页 > 科技 >

超级电容应用电路_超级电容应用电路设计

请问超级电容放电电路原理是怎样的?

1.超级电容器比表面积加大

超级电容应用电路_超级电容应用电路设计超级电容应用电路_超级电容应用电路设计


超级电容应用电路_超级电容应用电路设计


传统电容,100年前就发明了,电容是靠比表面积存储电荷,其优点是可无数次充放电,而且不发热。储电量的大小由其内部比表面积大小而决定。超级电容器,就是在研发出新材料的基础上,尽可能地扩表面积,使储电量大幅增加。

2.超级电容器储电材料结构内并

电池的优点是储电量大,由电能转化成化学能,再转化成电能释放出来,其比容量比传统电容高得多。超级电容,在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。

3.超级电容器性能优势

安全稳定

超级电容器,充满电后用打,使其短路,任何反应都没有;放在火上烧,即使不锈钢外壳烧红,也不会发生爆炸。

充电速度快

超级电容器,可用1500A,甚至3000A的大电流充电,单块充满电只要几秒钟,上百块串联在一起充电,6分钟可达90%以上。

功率密度高

可达300W/KG~5000W/KG,相当于电池的5~10倍。

能量转换效率高

能量转换过程损失小,大电流能量循环效率≥90%。

超低温特性好

可在摄氏零下30℃的环境中工作。

超级电容器,与传统电容器相比,首先,在研发出新材料的基础上尽可能地扩表面积,使存储的电量大幅增加;其次,高能镍碳超级电容器在正负极的材料结构上获突破,其比功率比传统电容高得多;另外,超级电容在结构上实现了电池和传统电容的内并,实现了电池和电容的优点兼备。与传统电容和传统动力电池相比,超级电容器和以其为基础生产的动力电源产品具有能量密度大、功率密度高、充放电效率高、温度适应性好、循环寿命长、安全环保、性价比高等技术优势,实现产业化之后将可以有效解决目前电动汽车动力电源技术瓶颈问题。南京绿索超级电容025.68251033,南京江宁开发区秣周路88号祖堂工业园.

接上大功率电阻就可以放电了

电容的构成,电容在电路中起到哪些作用?详细教程带给你们

超级电容保护电路(平衡电路)求教

可以使用BW6101超级电容模组专用保护芯片,BW6101超级电容保护芯片是专门针对超级电容串联模组的电容单体过压保护而设计的一款高性能、低价格芯片,此芯片应用简单,性能可靠,可以替换原有的TL431、XC61C及其它的分立元件方案,电路简单,外围器件小,电压精度高,是一款专门为超级电容保护而研发的专门芯片。

BW6101采用高精度内部电压基准,确保保护电压精度在1%以内,内置功率管可以提供大电流泄放能力,在没有外部扩流管的条件下,可以提供200mA的电流泄放能力,如果需要大电流泄放保护,可以采用外部增加扩流MOS管,泄流能力可以达到几安培甚至几十安培,满足大容量法拉电容模组保护要求。

BW6101采用SOT23-5封装,器件体积小,集成度高,外围器件少,可以满足高密度安装要求,极大地降低应用成本,提高了电路可靠性。

2.7V 10F超级电容串联示例

超级电容应用及其相关

导语:电容是我们生活中必不可少的一种电子器件,利用电容而制成的电子器件也是非常多的。比如说电容电阻,还有应用于各种电器电路板上的电容。科技发展到现在,电容也得到了较大的发展,出现了超级电容这一先进的物件。不过相信大多数的读者朋友们对于超级电容这一概念不会是很了解。下面的这篇文章就来为大家介绍关于超级电容的知识,希望能够对大家起到帮助作用。

超级电容的

超级电容是一种双电层电容器,能够通过极化电解质;来储存电能,从而保证电子器件的正常使用。和传统的普通电容相比,它具有更强的储能作用,因为它是一种介于电容与电池之间的器件,也可以将它看做是一种特殊的电源。由于能够提供大量的电能,储存更多的电荷,加之超级电容的寿命较长,因此,它在生活中的使用是非常广泛的。

超级电容的应用

超级电容在诸多领域都有着非常重要的作用,下面为大家来介绍超级电容的应用。

超级电容最重要的是在汽车工业领域中的应用。我们都知道,汽车的智能控制系统(即轻型混合动力系统)的电路系统就需要用到电容,以前的普通电容储存的电能容量有限,使得汽车在不断地启动与停车中,造成蓄电池的工作情况始终不稳定,发生着很大的变化。随着汽车汽车工业的发展,以及超级电容的问世,这样的情况得到了相应的解决。超级电容的电能储存量大,电能的比能量比较低,这样即使在不停地停车与启动的过程中也能够保持一个稳定的电能量,这就使得汽车能够保持稳定的行驶。而且在汽车行驶的过程中,超级电容还能够迅速地、高效地吸收电制动的再生能,这样就可以使电池的寿命延长,使汽车的续驶里程得到极大的提高。这就是超级电容在汽车工业领域中的应用。

超级电容还能够应用于小型的机械设备上,应用于小型设备上的超级电容主要是的超级电容设备,而上文所讲的应用于汽车领域的超级电容则是大尺寸的电容设备。应用于小型机械设备的超级电容就目前而言,在运输行业以及自然资源采集的行业有着非常好的前景,特别是用于交通运输行业的制动系统。在自然能源的采集行业里,超级电容因为有着充放电快、循环寿命长的特点,能够减少电池的更换,为采集设备提供能量。

超级电容使用的注意事项

在超级电容使用的过程中,应该注意以下的事项。首先,在使用超级电容设备之前,应该确保电路中的电压符合使用标准,这样就可以避免对电容的损坏;其次,超级电容应该远离热源,这样就可以避免外部环境的温度对电容寿命的影响;,也是非常重要的一点,超级电容要和各种工作装置串联使用,这样才能使超级电容能够达到工作的目的。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:【

求DS1302和超级电容构成的电源备份电路?

本文

将介绍实时时钟DS1302与超级电容的应用实例,有助于设计人员使用超级电容完成时钟保持、数据保持等电路的设计。---Dallas半导体公司的DS1302涓流充电时钟芯片是一个可编程3线串行接口时钟芯片,可用超级电容或可充电电池备份系统的时间和日期,还提供31字节的非易失SRAM用于数据存储。由DS1302和超级电容构成的电源备份电路如图1所示:

DS1302的VCC2接主电源,VCC1接超级电容正极。针对不同的电源备份系统,如可充电的镍氢电池、镍镉电池,还有容量不同的超级电容,DS1302专门提供了可编程涓流充电电路,以适应不同的充电电流要求,充电电路如图2所示:

通过设置电路内的DS和RS控制位,可设置不同的充电电流IMAX。例如控制字是10100101,则表示选通了一只二极管,同时选通阻值为2kΩ的R1,IMAX计算公式如式1,式中的VDrop是二极管的电压降。IMAX=(VCC2-n·VDrop)/R

n=1,2

(1)

表1列出了IMAX计算值,对应VCC2的值是4.5V、5.0V、5.5V,有1只二极管和2只二极管两种情况,电阻值为2kΩ、42kΩ和82kΩ。充电过程

作为电源备份的元件,超级电容的充、放电特性是关注的重点,结合DS1302的可编程充电电路,在下面给出充电时电压V(t)及电流I(t)与时间的函数及放电时电压V(t)与时间的函数。

超级电容端电压与时间的函数可表示为式2。

V(t)=VMAX

[1-e(-t/RC)]

(2)

V(t)为超级电容端电压,VMAX等于VCC2减去n·VDrop,R为内部涓流充电电阻,C是超级电容的容量。超级电容两端电压充电到VMAX的95%所需时间见表2。

充电电流与时间的函数可表示为式3。

I(t)=VMAX/R·e(-t/RC)

(3)

I(t)为充电电流。

超级电容充电特性曲线如图3所示:

放电过程

要知道DS1302使用超级电容放电的时间,则需要了解DS1302的特性参数ICC1T(时间保持电流),ICC1T呈线性变化,这意味着DS1302可以表示为阻性负载RL,超级电容通过此负载来放电。根据DS1302数据手册,在VCC1为2.5V时,ICC1T为0.3μA,这样RL约为8.3MΩ。在不考虑超级电容自放电影响的情况下,超级电容放电特性可表示为式4。

V(t)=VMAX·e(-t/RLC)

(4)

RL为DS1302负载阻抗。电容放电至2V,根据上面公式计算的放电时间值见表3。

超级电容放电电压特性曲线见图4:

超级电容器的应用体现在哪些领域?

超级电容器表中驱动微电机、继电器、电磁阀等,在一些带有机械动作功能的电话中,由于电话网的电流较小,不可能实现动作功能,因此要有一个电源对这一动作进行支持,电池也是一种选择,由于存在更换及维修的问题,超级电容器显示出优越性。 超级电容器还可用于对照相机闪光灯进行供电,可以使闪光灯达到连续使用的性能,从而提高照相机连续拍摄的能力;另外,德国Epcos公司还用该器件对相机快门进行控制。机动通讯设备往往采用脉冲的方式保持联络,由于双电层电容器的瞬时充放电能力强,可以提供的功率大,在这一领域的应用也非常广阔。大容量超级电容器的另一个重要应用在电力系统上,运用超级电容器进行重要系统的瞬态稳压稳流,特别是在大功率系统上,几乎是不可替代的器件。在这方面,据华北电力大学电能质量所的调查,在众多大型石化、电子、纺织等企业,各企业每年因电力波动的损失可能高达上千万;另外,芯片企业在选址时考虑电力的波动也是一个非常重要的环节,而超级电容器系统则可以完全解决这个问题。

电动助力车市场正在大力扩展,其电源与电动汽车相似,蓄电池由于其充放电电流要求苛刻,能量难以进行瞬时回收,同时其功率性能不佳也直接影响其应用,而超级电容器非常容易满足这些要求,采用超级电容器在其起动、加速与爬坡时对系统进行能源补充,并在刹车时完全回收能量,提高系统性能。在风力发电或太阳能发电系统中,由于风力与太阳能的不稳定性,会引起蓄电池反复频繁充电,结果大大缩短电池寿命,利用双电层电容器吸收或补充电能的波动,可以轻易解决这一问题。此外,在有瞬间强负载系统中,利用双电层电容器可以起到稳定系统电压,减少系统电源容量配制的作用。超级电容器在有些场合可以替代电池工作,同时,可以避免由于瞬间负载变化而产生的误作。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 12345678@qq.com 举报,一经查实,本站将立刻删除。

联系我们

工作日:9:30-18:30,节假日休息